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1. Introduction 

 The foundational work on variational inequality was established and explored by Stampacchia 

[1] and Fichera [2] in the early 1960s. This theory has proven effective in solving problems across 

various fields such as economics, optimization, elasticity, transportation, and both basic and applied 

sciences (see [3-12] for more details). Due to its extensive applications, the classical variational 

inequality problem has been studied and extended in several directions. Among these extensions, 

variational inclusion holds significant importance. 

 One of the main challenges in the theory of variational inequality is the development of 

efficient, practical algorithms. The resolvent operator technique, a generalization of the projection 

method, has been widely used to address variational inclusion problems. Recent advancements have 

further refined this technique. Fang and Huang [13] introduced a class of H-monotone operators and 

expanded the associated class of resolvent operators, building on the work of Ding and Lou [14] and 

Huang and Fang [15] on maximal monotone operators. For further details, refer to [13,14,16–19] and 

related references. 

 The XOR operation (⊕) is a binary operation that acts similarly to addition. It is both 

associative and commutative, and each element is self-inverse under this operation. In Boolean 

algebra, XOR corresponds to addition modulo 2. This operation has various practical applications, 

including data encryption, error detection in digital communication, and parity checking, and it also 

aids in implementing multi-layer perception in neural networks. In recent years, fixed point theory 

and its applications have been widely studied in real ordered Banach spaces. Consequently, the study 

of generalized nonlinear ordered variational inequalities (inclusions) has gained importance. In 2008, 
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Li [20] introduced generalized nonlinear ordered variational inequalities and proposed an algorithm 

to approximate solutions for a class of these inequalities in real ordered Banach spaces. Since then, 

several researchers have employed the XOR operation and its variants to solve different classes of 

variational inequality and inclusion problems in real ordered Hilbert and Banach spaces, see for 

example [21–32]. 

 Building on this, in this paper, we use the concept of XOR-NODSM mappings, involving the 

⊕ operation, along with a new resolvent operator technique associated with XOR-NODSM 

mappings. We introduce and investigate a novel and intriguing problem known as the Generalized 

Cayley inclusion problem involving XOR operation in ordered positive Hilbert spaces. Additionally, 

we propose a new iterative algorithm with errors for this system of variational inclusions. Some 

properties of the associated resolvent operator and Cayley operator are discussed by incorporating ⊕ 

and ⊙ operations. Finally, we prove the existence and convergence result for the generalized Cayley 

inclusion problem involving XOR operation. 

 

2. Preliminaries 

Throughout this paper, we assume that X is a real ordered positive Hilbert space with the 

partial ordering “≤” endowed with a norm ‖. ‖ and an inner product 〈. , . 〉,  d is the metric 

induced by the norm ‖. ‖ and 2X is the family of all non-empty subsets of X. First, we recall 

some known definitions and results which are important to achieve the goal of this paper. 

Definition 2.1. A non-empty closed convex subset C of ‖. ‖ is said to be a cone if 

(i) For any 𝑥 ∈ 𝐶 and any 𝜆 > 0 , 𝜆𝑥 ∈ 𝐶 

(ii) For any 𝑥 ∈ 𝐶 and −𝑥 ∈ 𝐶. Then 𝑥 = 0 

(iii) 𝑥 and 𝑦 are said to be comparable to each other if and only if either 𝑥 ≤ 𝑦 or  𝑦 ≤ 𝑥 

and is denoted by 𝑥 𝑅 𝑦. 

Definition 2.2. A cone 𝐶 is called a normal cone if and only if there exists a constant 𝜆𝑁 > 0  

such that 0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝜆𝑦, ∀𝑥, 𝑦 ∈ 𝑋  , where 𝜆𝑁  is called a normal constant of 𝐶. 

Definition 2.3. For any 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝐶. The relation ≤  is a partial 

ordered relation in 𝑋. The real Hilbert Space 𝑋 endowed with the ordered relation ≤ defined 

by C is called an ordered real Hilbert Space. 

Definition 2.4. For arbitrary elements x, y ∈ X, lub{x, y} and glb{x, y} means least upper bound 

and greatest lower bound of the set {x, y}. Suppose lub{x, y} and glb{x, y} exist, some binary 

operations are defined as follows: 

(i) 𝑥 ∨ 𝑦 = 𝑙𝑢𝑏{𝑥, 𝑦} 

(ii) 𝑥 ∧ 𝑦 = 𝑔𝑙𝑏{𝑥, 𝑦} 

(iii) 𝑥 ⊕ 𝑦 = (𝑥 − 𝑦) ∨ (𝑦 − 𝑥) 

(iv) 𝑥 ⊙ 𝑦 = (𝑥 − 𝑦) ∧ (𝑦 − 𝑥). 

 

The operations ∨, ∧, ⊕ and ⊙ are called OR, AND, XOR and XNOR operations, respectively. 
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Lemma 2.5. If 𝑥 𝑅 𝑦, then lub{𝑥, 𝑦} and glb{𝑥, 𝑦} exist, (𝑥 − 𝑦) 𝑅 (𝑦 − 𝑥) and 0 ≤

(𝑥 − 𝑦) ∨ (𝑦 − 𝑥). 

Lemma 2.6. For any natural number 𝑛, 𝑥 𝑅 𝑦𝑛 and 𝑦𝑛 𝑅 𝑦∗as 𝑛 → ∞, then 𝑥 𝑅 𝑦∗. 

Proposition 2.7.  Let ⊕ and ⊙ be XOR and XNOR operations, respectively. Then for all 

𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋;  𝛼, 𝛽, 𝜆 ∈ 𝑅, the following relations hold: 

(i) 𝑥 ⊙ 𝑥 = 0, 𝑥 ⊙ 𝑦 = 𝑦 ⊙ 𝑥 =  −(𝑥 ⊕ 𝑦) = −( 𝑦 ⊕ 𝑥) 

(ii)  if 𝑥 𝑅 0, then −𝑥 ⊕ 0 ≤  𝑥 ≤ 𝑥 ⊕ 0. 

(iii)  (𝜆𝑥) ⊕ (𝜆𝑦) = |𝜆|(𝑥 ⊕ 𝑦). 

(iv)  0 ≤ (𝑥 ⊕ 𝑦) if 𝑥 𝑅 𝑦 

(v)  if 𝑥 𝑅 𝑦, then 𝑥 ⊕ 𝑦=0 if and only if 𝑥 = 𝑦; 

(vi)  (𝑥 ⊕ 𝑦) ⊙ (𝑢 + 𝑣) ≥ (𝑥 ⊙ 𝑢) + (𝑦 ⊙ 𝑣) 

(vii)  (𝑥 ⊕ 𝑦) ⊙ (𝑢 + 𝑣) ≥ (𝑥 ⊙ 𝑣) + (𝑦 ⊙ 𝑢) 

(viii)  If 𝑥, 𝑦 and w are comparative to each other, then (𝑥 ⊕ 𝑦) ≤ (𝑥 ⊕ 𝑤) + (𝑤 ⊕ 𝑦) 

(ix) 𝛼𝑥 ⊕ 𝛽𝑥 = |𝛼 − 𝛽|𝑥, if 𝑥 𝑅 0. 

 

Proposition 2.8. Let 𝐾 be a normal cone in 𝑋 with normal constant 𝑁, then for each 

𝑥, 𝑦 ∈ 𝑋, the following relations hold: 

(i) ‖0 ⊕ 0‖ = ‖0 ⊕ 0‖ = 0; 

(ii) ‖𝑥 ∨ 𝑦‖ ≤ ‖𝑥‖ ∨ ‖𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖. 

(iii) ‖𝑥 ⊕ 𝑦‖ ≤ ‖𝑥 − 𝑦‖ ≤ 𝜆𝑁‖𝑥 ⊕ 𝑦‖; 

(iv) If 𝑥 𝑅 𝑦 then ‖𝑥 ⊕ 𝑦‖ ≤ ‖𝑥 − 𝑦‖. 

Definition 2.9. Let 𝐴: 𝑋 → 𝑋 be a single valued mapping. Then: 

(i) 𝐴 is said to be comparison mapping if for each 𝑥, 𝑦 ∈ 𝑋, 𝑥 𝑅 𝑦, then 𝐴(𝑥) 𝑅 𝐴(𝑦) 

and 𝑥 𝑅 𝐴(𝑥) and 𝑦 𝑅 𝐴(𝑦). 

(ii) 𝐴 is said to be strongly comparison mapping if 𝐴 is comparison mapping, and 

𝐴(𝑥) 𝑅 𝐴(𝑦) if and only if 𝑥 𝑅 𝑦 for any 𝑥, 𝑦 ∈ 𝑋. 

Definition 2.10. A mapping 𝐴: 𝑋 → 𝑋 is said to be 𝛽-ordered compression mapping, if 

𝐴 is comparison mapping and 𝐴(𝑥) ⊕ 𝐴(𝑦) ≤ 𝛽(𝑥 ⊕ 𝑦), for 0 < 𝛽 < 1. 

Definition 2.11. A single valued mapping 𝐴: 𝑋 → 𝑋 is said to be 𝛼-Lipschitz-type-
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continuous if there exists a constant 𝛼 > 0 such that 

‖𝐴(𝑥) ⊕ 𝐴(𝑦)‖ ≤ 𝛼‖𝑥 − 𝑦‖. 

Definition 2.12. Let 𝑀: 𝑋 → 2𝑋 be a set-valued mapping, then 

(i) 𝑀 is said to be comparison mapping if for any 𝑣𝑥 ∈ 𝑀(𝑥), 𝑥 𝑅 𝑣𝑥 and if 𝑥 𝑅 𝑦, then for 

any 𝑣𝑥 ∈ 𝑀(𝑥) and any 𝑣𝑦 ∈ 𝑀(𝑦), 𝑣𝑥 𝑅 𝑣𝑦, 𝑥, 𝑦 ∈ 𝑋. 

(ii) A comparison mapping 𝑀 is said to be 𝛼-non-ordinary difference mapping, if for each 

𝑥, 𝑦 ∈ 𝑋, 𝑣𝑥 ∈ 𝑀(𝑥) and 𝑣𝑦 ∈ 𝑀(𝑦), such that (𝑣𝑥 ⊕ 𝑣𝑦) ⊕ 𝛼(𝑥 ⊕ 𝑦) = 0. 

(iii) A comparison mapping 𝑀 is said to be 𝜗-ordered rectangular, if there exists a constant 

𝜗 > 0, for any 𝑥, 𝑦 ∈ 𝑋, 𝑣𝑥 ∈ 𝑀(𝑥) and 𝑣𝑦 ∈ 𝑀(𝑦), such that 

〈𝑣𝑥 ⊙ 𝑣𝑦, −(𝑥 ⊕ 𝑦)〉 ≥ 𝜗‖𝑥 ⊕ 𝑦‖2. 

(iv) a comparison mapping 𝑀is said to be 𝜌-XOR ordered strongly monotone compression 

mapping, if for 𝑥 𝑅 𝑦,  there exists a constant 𝜌 > 0 such that 

𝜌(𝑣𝑥 ⊕ 𝑣𝑦) ≥ (𝑥 ⊕ 𝑦), ∀𝑥, 𝑦 ∈ 𝑋, 𝑣𝑥 ∈ 𝑀(𝑥), 𝑣𝑦 ∈ 𝑀(𝑦). 

Definition 2.13. Let 𝐴: 𝑋 → 𝑋 be a strongly comparison and 𝛽-ordered compression mapping. 

Then a comparison set-valued mapping 𝑀: 𝑋 → 2𝑋 is said  to  be  (𝛼, 𝜌)-XOR-NODSM if M is 

a 𝛼-non-ordinary difference mapping and 𝜌-XOR-ordered strongly monotone mapping and 

(𝐴 + 𝜌𝑀)𝑋 = 𝑋, for 𝛼, 𝛽, 𝜌 > 0. 

Definition 2.14. The resolvent operator 𝐽𝜌,𝐴
𝑀 : 𝑋 → 𝑋 is defined by 

  𝐽𝜌,𝐴
𝑀 (𝑢) = (𝐴 + 𝜌𝑀)−1(𝑢), ∀𝑢 ∈ 𝑋.    (2.1) 

Lemma 2.15. Let A: X → X  be a β-ordered compression mapping and M: X → 2X be the set-

valued ϑ-ordered rectangular mapping with ϑρ > 𝛽. Then the resolvent operator Jρ,A
M : X → X is 

single-valued. 

Proof. For any given 𝑢 ∈ 𝑋 and a constant 𝜌 > 0, let 𝑥, 𝑦 ∈ (𝐴 + 𝜌𝑀)−1(𝑢), then 

𝑣𝑥 =
1

𝜌
(𝑢 ⊕ 𝐴(𝑥)) ∈ 𝑀(𝑥), 

𝑣𝑦 =
1

𝜌
(𝑢 ⊕ 𝐴(𝑦)) ∈ 𝑀(𝑦). 

Using (i) and (ii) of Proposition 2.7, we have 
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𝑣𝑥 ⊙ 𝑣𝑦 =
1

𝜌
(𝑢 ⊕ 𝐴(𝑥)) ⊙

1

𝜌
(𝑢 ⊕ 𝐴(𝑦)) 

              =
1

𝜌
((𝑢 ⊕ 𝐴(𝑥)) ⊙ (𝑢 ⊕ 𝐴(𝑦))) 

                = −
1

𝜌
((𝑢 ⊕ 𝐴(𝑥)) ⊙ (𝑢 ⊕ 𝐴(𝑦))) 

                = −
1

𝜌
((𝑢 ⊕ 𝑢) ⊕ (𝐴(𝑥) ⊕ 𝐴(𝑦))) 

 = −
1

𝜌
(0 ⊕ (𝐴(𝑥) ⊕ 𝐴(𝑦))) 

≤ −
1

𝜌
(𝐴(𝑥) ⊕ 𝐴(𝑦)). 

Thus, we have 

     𝑣𝑥 ⊙ 𝑣𝑦 ≤ −
1

𝜌
(𝐴(𝑥) ⊕ 𝐴(𝑦))  (2.2) 

Since, 𝑀 is 𝜗-ordered rectangular mapping, 𝐴 is 𝛽-ordered compression mapping and by using 

(2.2), we have 

𝜗‖𝑥 ⊕ 𝑦‖ ≤ 〈𝑣𝑥 ⊙ 𝑣𝑦 , −(𝑥 ⊕ 𝑦)〉 

≤ 〈−
1

𝜌
(𝐴(𝑥) ⊕ 𝐴(𝑦)), −(𝑥 ⊕ 𝑦)〉 

≤
1

𝜌
〈𝐴(𝑥) ⊕ 𝐴(𝑦), 𝑥 ⊕ 𝑦〉 

≤
1

𝜌
〈𝛽(𝑥 ⊕ 𝑦), 𝑥 ⊕ 𝑦〉 

=
𝛽

𝜌
〈𝑥 ⊕ 𝑦, 𝑥 ⊕ 𝑦〉 

=
𝛽

𝜌
‖𝑥 ⊕ 𝑦‖2 

=
𝛽

𝜌
‖𝑥 ⊕ 𝑦‖ 

Thus, we have  

   ‖𝑥 ⊕ 𝑦‖ = 0 ⇒ 𝑥 ⊕ 𝑦 = 0, for 𝜗𝜌 > 𝛽  (2.2) 

Therefore, 𝑥 = 𝑦. Hence, the resolvent operator is single-valued for 𝜗𝜌 > 𝛽. 

 

Lemma 2.16. Let 𝑀: 𝑋 → 2𝑋 be (𝛼, 𝜌)-XOR-NODSM set-valued mapping with respect to 
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𝐽𝜌,𝐴
𝑀  and 𝐴: 𝑋 → 𝑋 be a strongly comparison mapping with respect to 𝐽𝜌,𝐴

𝑀 . Then the 

resolvent operator 𝐽𝜌,𝐴
𝑀 : 𝑋 → 𝑋 is a comparison mapping. 

Proof. Let 𝑀: 𝑋 → 2𝑋 be (𝛼, 𝜌)-XOR-NODSM set-valued mapping with respect to 𝐽𝜌,𝐴
𝑀  , 

i.e., 𝑀 is 𝛼-non ordinary difference mapping and 𝜌-XOR-ordered strongly monotone 

comparison mapping with respect to 𝐽𝜌,𝐴
𝑀  so that 𝑥 𝑅 𝐽𝜌,𝐴

𝑀 . 

For any 𝑥, 𝑦 ∈ 𝑋, let 𝑥 𝑅 𝑦 and  

𝑣𝑥∗ =
1

𝜌
(𝑥 ⊕ 𝐴(𝐽𝜌,𝐴

𝑀 (𝑥))) ∈ 𝑀(𝐽𝜌,𝐴
𝑀 (𝑥)),                                                (2.4) 

𝑣𝑦∗ =
1

𝜌
(𝑦 ⊕ 𝐴(𝐽𝜌,𝐴

𝑀 (𝑦))) ∈ 𝑀(𝐽𝜌,𝐴
𝑀 (𝑦))                                                (2.5). 

 

Since 𝜌-XOR-ordered strongly monotone, using (2.4) and (2.5), we have   

𝑥 ⊕ 𝑦 ≤ 𝜌(𝑣𝑥∗ ⊕ 𝑣𝑦∗) 

𝑥 ⊕ 𝑦 ≤ [(𝑥 ⊕ 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕ (𝑦 ⊕ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦))] 

𝑥 ⊕ 𝑦 ≤ (𝑥 ⊕ 𝑦) ⊕ [𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦))] 

0 ≤ 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦)) 

0 ≤ 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦)) 

That is, 

0 ≤ [𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) − 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦))] ∨ [𝐴 (𝐽𝜌,𝐴
𝑀 (𝑦)) − 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑥))]. 

Hence, 

0 ≤ [𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) − 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦))] 𝑜𝑟 0 ≤ [𝐴 (𝐽𝜌,𝐴
𝑀 (𝑦)) − 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑥))]. 

Thus we have 

𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ≥ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦)) , 𝑜𝑟 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑦)) ≥ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑥)), 

which implies that 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥))  𝑅 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦)). 

Since 𝐴 is strongly comparison mapping with respect to 𝐽𝜌,𝐴
𝑀 . Therefore, 𝐽𝜌,𝐴

𝑀 (𝑥)𝑅𝐽𝜌,𝐴
𝑀 (𝑦). 

Thus, the resolvent operator is a comparison mapping. 

Lemma 2.17. Let 𝑀: 𝑋 → 2𝑋 be (𝛼, 𝜌)-XOR-NODSM set-valued mapping with respect to 

𝐽𝜌,𝐴 
𝑀 and 𝐴: 𝑋 → 𝑋 be a strongly comparison mapping such that  

 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕  𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦))  𝑅 𝐽𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐽𝜌,𝐴

𝑀 (𝑦). 

Then the following condition holds for 𝛼𝜌 > 𝛿, 𝛿 ≥ 1: 

𝐽𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐽𝜌,𝐴

𝑀 (𝑦) ≤
𝛿

(𝛼𝜌 ⊕ 𝛿)
(𝑥 ⊕ 𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋,  
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That is the resolvent operator 𝐽𝜌,𝐴
𝑀  is 

𝛿

(𝛼𝜌⊕𝛿)
-Lipschitz continuous mapping. 

Proof. For any 𝑥, 𝑦 ∈ 𝑋, noting the fact that 𝑀 is (𝛼, 𝜌)-XOR-NODSM set-valued mapping 

with respect to 𝐴 and 𝐽𝜌,𝐴
𝑀  and using 2.16, we have 

  𝛼 [𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕ 𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦))] = 𝑣𝑥 ⊕ 𝑣𝑦. 

=
1

𝜌
((𝑥 ⊕ 𝑦) ⊕ (𝐴(𝐽𝜌,𝐴

𝑀 (𝑥)) ⊕ 𝐴(𝐽𝜌,𝐴
𝑀 (𝑦)))) 

≤
𝛿

𝜌
[(𝑥 ⊕ 𝑦) ⊕ (𝐴(𝐽𝜌,𝐴

𝑀 (𝑥)) ⊕ 𝐴(𝐽𝜌,𝐴
𝑀 (𝑦)))]. 

That is, 

𝛼𝜌

𝛿
(𝐴(𝐽𝜌,𝐴

𝑀 (𝑥)) ⊕ 𝐴(𝐽𝜌,𝐴
𝑀 (𝑥))) ≤ (𝑥 ⊕ 𝑦) ⊕ (𝐴(𝐽𝜌,𝐴

𝑀 (𝑥)) ⊕ 𝐴(𝐽𝜌,𝐴
𝑀 (𝑦))) 

Therefore, we have 

(
𝛼𝜌

𝛿
⊕ 1) [𝐴 (𝐽𝜌,𝐴

𝑀 (𝑥)) ⊕ 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑦))] ≤ (𝑥 ⊕ 𝑦). 

Since  𝐴 (𝐽𝜌,𝐴
𝑀 (𝑥)) ⊕  𝐴 (𝐽𝜌,𝐴

𝑀 (𝑦)) 𝑅 (𝐽𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐽𝜌,𝐴

𝑀 (𝑦)), we have 

(
𝛼𝜌

𝛿
⊕ 1) [𝐴 (𝐽𝜌,𝐴

𝑀 (𝑥)) ⊕ 𝐴 (𝐽𝜌,𝐴
𝑀 (𝑦))] ≤ (𝑥 ⊕ 𝑦) 

It follows that 

𝐽𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐽𝜌,𝐴

𝑀 (𝑦) ≤
𝛿

𝛼𝜌⊕𝛿
(𝑥 ⊕ 𝑦). 

That is the resolvent operator 𝐶𝜌,𝐴
𝑀  is 

𝛿

(𝛼𝜌⊕𝛿)
-Lipschitz continuous mapping. 

Definition 2.18. The generalized Cayley operator 𝐶𝜌,𝐴
𝑀 : 𝑋 → 𝑋 is defined as 

𝐶𝜌,𝐴
𝑀 =(2𝐽𝜌,𝐴

𝑀 − 𝐴)(𝑥), ∀ 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝜌 > 0 

Lemma 2.19. Let 𝐴: 𝑋 → 𝑋 be 𝑟-Lipschitz continuous mapping. Then the Cayley operator  is 

𝐿-Lipschitz continuous, where  𝐿 =
2𝛿+𝑟(𝛼𝜌+𝛿)

(𝛼𝜌⊕𝛿)
 

Proof. For any 𝑥, 𝑦 ∈ 𝑋, we have  

‖𝐶𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐶𝜌,𝐴

𝑀 (𝑦)‖ =  ‖(2𝐽𝜌,𝐴
𝑀 (𝑥) − 𝐴(𝑥)) ⊕ (2𝐽𝜌,𝐴

𝑀 (𝑦) − 𝐴(𝑦))‖ 

    ≤ 2‖𝐽𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐽𝜌,𝐴

𝑀 (𝑦)‖ + ‖𝐴(𝑥) ⊕ 𝐴(𝑦)‖ 

   ≤ 2 (
𝛿

𝛼𝜌⊕𝛿
) ‖𝑥 ⊕ 𝑦‖ + 𝑟‖𝑥 ⊕ 𝑦‖. 

 = (
2𝛿

𝛼𝜌⊕𝛿
+ 𝑟) ‖𝑥 ⊕ 𝑦‖. 

That is ‖𝐶𝜌,𝐴
𝑀 (𝑥) ⊕ 𝐶𝜌,𝐴

𝑀 (𝑦)‖ ≤ 𝐿‖𝑥 ⊕ 𝑦‖, 𝑤ℎ𝑒𝑟𝑒 𝐿 = (
2𝛿

𝛼𝜌⊕𝛿
+ 𝑟). 
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3. Formulation of the Problem 

 

Let 𝑋 be a real ordered Hilbert Space. Let 𝑁: 𝑋 × 𝑋 → 𝑋 be a single valued mapping, 

𝑀: 𝑋 × 𝑋 → 2𝑋, 𝐵, 𝑇, 𝐺: 𝑋 → 𝐶𝑐(𝑋) be set-valued mappings. Further let 𝐴, 𝑔: 𝑋 → 𝑋 be 

mappings such that 𝑅(𝑔) ∩ 𝐷(𝑀(. , 𝑧)) ≠ 𝜙. We consider the following problem: Find 

(𝑥, 𝑢, 𝑣, 𝑧), where 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐵(𝑥), 𝑣 ∈ 𝑇(𝑥), 𝑧 ∈ 𝐺(𝑥) such that 

   𝜃 ∈ 𝑁(𝑢, 𝑣) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧)

(𝑢) ⊕ 𝑀(𝑔(𝑥), 𝑧)  (3.1)   

We call this problem system of non-linear variational inclusion problems involving ⊕ operator 

(inshort,SNVIP⊕). 

 

Some Special Cases: 

1. If 𝑋 = 𝐻𝑝 , 𝑁(𝑢, 𝑣) = 𝑃(𝑥), 𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢) = 0, 𝑀(𝑔(𝑥), 𝑧) = 𝑀(𝑓(𝑥), 𝑔(𝑥)). Then, the 

SNVIP⊕ (3.1) reduces to: Find 𝑥 ∈ 𝐻𝑝, 𝑢 ∈ 𝐵(𝑥), 𝑣 ∈ 𝑇(𝑥) such that 

   𝜃 ∈ 𝑁(𝑢, 𝑣) ⊕ 𝑀(𝑓(𝑥), 𝑧)    (3.2) 

Problem 3.2 is studied by Rais Ahmad et al [33]. 

2. If 𝑋 =

𝐻𝑝, 𝑁(𝑢, 𝑣) = 𝑃(𝑥), 𝑀(𝑔(𝑥), 𝑧) = 𝑀(𝑥), 𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢) = 0. Then, the SNVIP⊕ (3.1) reduces 

to: Find 𝑥 ∈ 𝐻𝑝 such that 

   0 ∈

𝑃(𝑥) ⊕ 𝑀(𝑥).  (3.3) 

Problem 3.3 is studied in [21]. 

3. If 𝑋 =

𝐻𝑝, 𝑁(𝑢, 𝑣) = 0, 𝑀(𝑔(𝑥), 𝑧) = 𝑀(𝑥), 𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢) = 0. Then, the SNVIP⊕ (3.1) reduces to: 

Find 𝑥 ∈ 𝐻𝑝 such that 

    0 ∈ 𝑀(𝑥).      (3.4) 

Problem 3.4 is introduced and studied in [24]. 

We remark that for suitable choices of the mappings and underlying space, one can get several 

classes of known and new problems for SNVIP⊕ (3.1). 

4. Existence of solution 

 

We give the following lemma which guarantees the existence of solution of SNVIP⊕ (3.1). 
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Lemma 4.1. Let 𝑋 be a real ordered positive Hilbert Space. Suppose 𝐴, 𝑔: 𝑋 → 𝑋 be 𝑟-

strongly monotone and 𝑀: 𝑋 × 𝑋 → 2𝑋 be 𝐴-monotone mapping. Let 𝑁: 𝑋 × 𝑋 → 𝑋 and 

𝑔: 𝑋 → 𝑋  be mappings such that 𝑅(𝑔) ∩ 𝐷(𝑀(. , 𝑧)) ≠ 𝜙. Let  𝐵, 𝑇, 𝐺: 𝑋 → 𝐶𝑐(𝑋) be set-

valued mappings. Then SNVIP⊕ (3.1) has the solution (𝑥, 𝑢, 𝑣, 𝑧), where 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐵(𝑥),

𝑣 ∈ 𝑇(𝑥), 𝑧 ∈ 𝐺(𝑥) if and only if it satisfies the following 

𝑔(𝑥) = 𝐽𝜌,𝐴
𝑀(,.𝑧)

{𝜌(𝑁(𝑢, 𝑣) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧)

(𝑢)) ⊕ 𝐴(𝑔(𝑥)) ⊕ 𝜌𝜃}. 

Proof. Suppose 

𝑔(𝑥) = 𝐽𝜌,𝐴
𝑀(,.𝑧)

{𝜌 (𝑁(𝑢, 𝑣) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢)) ⊕ 𝐴(𝑔(𝑥)) ⊕ 𝜌𝜃} 

⟺ 𝑔(𝑥) = (𝐴 + 𝜌𝑀(, . 𝑧))
−1

{𝜌(𝑁(𝑢, 𝑣) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧)

(𝑢)) ⊕ 𝐴(𝑔(𝑥)) ⊕ 𝜌𝜃}. 

⟺ (𝑔(𝑥)) +  𝜌𝑀(𝑔(𝑥), 𝑧) ∋ 𝜌(𝑁(𝑢, 𝑣) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧)

(𝑢)) ⊕ 𝐴(𝑔(𝑥)) ⊕ 𝜌𝜃 

⟺ 𝜃 ∈ (𝑁(𝑢, 𝑣) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧)

(𝑢)) ⊕ 𝐴(𝑔(𝑥)) ⊕ 𝑀(𝑔(𝑥), 𝑧) 

Based on the above result, we propose the following iterative algorithm for finding the approximate 

solution of SNVIP⊕ (3.1). 

 

Iterative Algorithm 4.2. 

Step 1. For any 𝜃 ∈ 𝑋 and 𝜌 ˃ 0, choose 𝑥0 ∈ 𝑋, 𝑢0 ∈ 𝐵(𝑥0), 𝑣0 ∈ 𝑇(𝑥0), and 𝑧0 ∈ 𝐺(𝑥0) 

such that 𝐵, 𝑇, 𝐺: → 2𝑋𝐶𝑐(𝑋). 

Step 2. Let 

𝑔(𝑥𝑛+1) = 𝐽𝜌,𝐴
𝑀(,.𝑧𝑛)

{𝜌 (𝑁(𝑢𝑛, 𝑣𝑛) ⊕ 𝐶𝜌,𝐴
𝑀(,.𝑧𝑛)

(𝑢𝑛)) ⊕ 𝐴(𝑔(𝑥𝑛)) ⊕ 𝜌𝜃 ⊕ 𝑒𝑛}. 

Step 3.  Choose 𝑢𝑛+1 ∈ B(𝑥𝑛+1), 𝑣𝑛+1∈ T(𝑥𝑛+1), 𝑧𝑛+1∈ 𝐺(𝑥𝑛+1), such that 

‖𝑢𝑛+1 ⊕ 𝑢𝑛‖  ≤   ‖𝑢𝑛+1 − 𝑢𝑛‖  ≤ (1 + (1 + 𝑛)−1)𝐻(𝐵(𝑥𝑛+1), 𝐵(𝑥𝑛)), 

‖𝑣𝑛+1 ⊕ 𝑣𝑛‖  ≤   ‖𝑣𝑛+1 − 𝑣𝑛‖  ≤ (1 + (1 + 𝑛)−1)𝐻(𝑇(𝑥𝑛+1), 𝑇(𝑥𝑛)), 

‖zn+1 ⊕ zn‖  ≤   ‖zn+1 − zn‖  ≤ (1 + (1 + n)−1)𝐻(G(xn+1), G(xn). 

Step  4.  Choose er ror  {𝑒𝑛} ∈ X  to take into account the possible inexact computations of 

the sequences such that, for all 𝑙 ∈ (0,1), ∑ ‖𝑒𝑗 ⊕ 𝑒𝑗−1‖∞
𝑗=1 𝑙−𝑗< ∞ , lim

𝑛→∞
𝑒𝑛 = 0. 

Step 5. If 𝑢𝑛+1 ∈ B(𝑥𝑛+1), 𝑣𝑛+1∈ 𝑇(𝑥𝑛+1), 𝑧𝑛+1∈ 𝐺(𝑥𝑛+1), satisfy (4.1) to sufficient 

accuracy, stop: otherwise, 𝑛 = 𝑛 + 1 and return to Step 2. 

Now we give the following result which guarantees the existence of solution of  SNVIP⊕ (3.1) and 

convergence analysis of the sequences generated by the Iterative Algorithm. 

Theorem 4.3. Let K ⸦ X be a normal cone with constant 𝜆𝑁. Let  𝑁: 𝑋 × 𝑋 → 𝑋 , 𝐶𝜌,𝐴
𝑀(,.𝑧)

: 𝑋 →

𝑋, 𝐴, 𝑔: 𝑋 → 𝑋, 𝐵, 𝑇, 𝐺: 𝑋 → 𝐶𝑐(𝑋) and 𝑀: 𝑋 × 𝑋 → 2𝑋 be mappings such that: 

(i). N i s  𝑎1-Lipschi tz - type-cont inuous  in  the  f i rs t  a rgument  and  𝑎2-Lipschi tz -

type-cont inuous  in  the  second argument .  

( i i ) .  𝐶𝜌,𝐴
𝑀(,.𝑧)

is 𝐿-Lipschi tz - type-cont inuous .  

( i i i )  𝐴 is 𝛽-ordered compression mapping. 
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( iv)  𝑔 i s  𝑟-Lipschi tz - type  cont inuous  and  (𝑔 ⊕ 𝐼) i s  𝛿-Lipschi tz - type  

cont inuous .  

(v)   M  i s  (𝛼, 𝜌)-XOR-NODSM and  θ-ordered  rec t angular  mapping .  

(v i )   B  i s  𝛾 -H -Lipschi tz - type-cont inuous  and T i s  ν-H -Lipschi tz - type-

cont inuous   and  𝐺 i s𝜇-Lipschi tz - type-cont inuous.  

If  𝑥𝑛+1 𝑅 𝑥𝑛,  g(𝑥𝑛+1) 𝑅 𝑔(𝑥𝑛) , for  𝑛 = 0,1,2 …, and  the  fol lowing condi t ion i s  

sa t i s f ied:  

0<
𝜆𝑁𝜌𝛿(𝑎1𝛾+𝑎2𝜈+𝐿𝛾)+𝜆𝑁𝛿𝛽𝑟

(1−𝛿)(𝛼𝜌⊕𝛿)
 <1.      (4.2) 

Then SNVIP⊕ (3.1) has a solution (𝑥, 𝑢, 𝑣, 𝑧), where 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐵(𝑥), 𝑣 ∈ 𝑇(𝑥), 𝑧 ∈

𝐺(𝑥).  Also the sequences generated by the Iterative Algorithm 4.2 converge strongly to 

𝑥, 𝑢, 𝑣, 𝑧, respectively. 

Proof. By Algorithm 4.2 and Proposition 2.7, we have  

        0 ≤ 𝑔(𝑥𝑛+1) ⊕ 𝑔(𝑥𝑛) 

              = 𝐽𝜌,𝐴
𝑀 {𝜌 (𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛)) ⊕ 𝐴(𝑔(𝒙𝒏)) ⊕  𝜌𝛳 ⊕ 𝑒𝑛} ⊕ 

                   𝐽𝜌,𝐴
𝑀 {𝜌 (𝑁(𝑢𝑛−1, 𝑣𝑛−1) ⊕  𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛−1)) ⊕ 𝐴(𝑔(𝒙𝒏−𝟏)) ⊕  𝜌𝛳 ⊕  𝑒𝑛−1} 

Now using Proposition 2.8 and Lipschitz-type-continuity of the resolvent operator, we have 

‖𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)‖

≤  𝜆𝑁 ‖𝐽𝜌,𝐴
𝑀 {𝜌 (𝑁(𝑢𝑛, 𝑣𝑛) ⊕ 𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛))        ⊕ 𝐴(𝑔(𝒙𝒏)) ⊕  𝜌𝛳 ⊕  𝑒𝑛}

⊕  𝐽𝜌,𝐴
𝑀 {𝜌 (𝑁(𝑢𝑛−1, 𝑣𝑛−1) ⊕  𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛−1)) ⊕ 𝐴(𝑔(𝒙𝒏−𝟏)) ⊕  𝜌𝛳 ⊕  𝑒𝑛−1}‖ 

≤  
𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)
‖{𝜌𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛) ⊕ 𝐴(𝑔(𝒙𝒏)) ⊕  𝜌𝛳 ⊕ 𝑒𝑛}

⊕ {𝜌𝑁(𝑢𝑛−1, 𝑣𝑛−1) ⊕  𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢𝑛−1) ⊕ 𝐴(𝑔(𝒙𝒏−𝟏)) ⊕  𝜌𝛳 ⊕ 𝑒𝑛−1}‖

≤  
𝜆𝑁𝛿𝜌

(𝛼𝜌 ⊕ 𝛿)
‖𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛) ⊕  𝑁(𝑢𝑛−1, 𝑣𝑛−1) ⊕  𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢𝑛−1)‖

+ 
𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)
‖𝐴(𝑔(𝒙𝒏)) ⊕  𝐴(𝑔(𝒙𝒏−𝟏))‖ +  

𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖ 

 

This implies 

‖𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)‖ ≤
𝜆𝑁𝛿𝜌

(𝛼𝜌 ⊕ 𝛿)
‖𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝑁(𝑢𝑛−1, 𝑣𝑛−1)‖ 

                                      +
𝜆𝑁𝛿𝜌

(𝛼𝜌⊕𝛿)
‖𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛) ⊕  𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢𝑛−1)‖ 

                                        +
𝜆𝑁𝛿

 (𝛼𝜌⊕𝛿)
‖𝐴(𝑔(𝒙𝒏)) ⊕  𝐴(𝑔(𝒙𝒏−𝟏))‖ 
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                                       +
𝜆𝑁𝛿

(𝛼𝜌⊕𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖                  (4.3) 

S ince  XOR opera tor  i s  associa t ive ,  N i s  𝑎1-Lipschi tz - type  cont inuous  in  the  

f i rs t  a rgument  and  𝑎2-Lipschi tz  type  cont inuous  in  the  second argument  and  B i s  

𝛾 -  H -Lipchi tz - type-cont inuous  and  T i s  ν-H-Lipschi tz - type-cont inuous ,  

therefore  in  v iew of Algor i thm 4 .2  we have  

 ‖𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝑁(𝑢𝑛−1, 𝑣𝑛−1)‖  

                      ≤ ‖𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝑁(𝑢𝑛−1, 𝑣𝑛)‖ ⊕ ‖𝑁(𝑢𝑛−1, 𝑣𝑛) ⊕  𝑁(𝑢𝑛−1, 𝑣𝑛−1)‖      

                    ≤   𝑎1‖𝑢𝑛 ⊕ 𝑢𝑛−1‖ +  𝑎2‖𝑣𝑛 ⊕ 𝑣𝑛−1‖ 

                    ≤   𝑎1(1 + 𝑛)−1𝐻(𝐵(𝑥𝑛+1), 𝐵(𝑥𝑛)) +  𝑎2(1 + 𝑛)−1𝐻(𝑇(𝑥𝑛+1), 𝑇(𝑥𝑛)) 

                ≤  𝑎1𝛾(1 + 𝑛)−1‖𝑥𝑛 − 𝑥𝑛−1‖ + 𝑎2𝜈‖𝑥𝑛 − 𝑥𝑛−1‖ 

This implies that 

‖𝑁(𝑢𝑛, 𝑣𝑛) ⊕  𝑁(𝑢𝑛−1, 𝑣𝑛−1)‖ ≤  [(𝑎1𝛾 +  𝑎2𝜈)(1 + 𝑛)−1]‖𝑥𝑛 − 𝑥𝑛−1‖      (4.4) 

S ince  𝐴 is 𝛽-ordered compression mapping, we have 

‖𝐴(𝑔(𝑥𝑛)) ⊕  𝐴(𝑔(𝑥𝑛−1))‖ ≤  𝛽‖𝑔(𝑥𝑛) ⊕  𝑔(𝑥𝑛−1)‖ 

                                    ≤  𝛽𝑟‖𝑥𝑛 − 𝑥𝑛−1‖   (4.5) 

S ince  𝐶𝜌,𝐴
𝑀(,.𝑧)

is L-Lipschi tz - type  cont inuous ,  we have  

‖𝐶𝜌,𝐴
𝑀(,.𝑧)(𝑢𝑛) ⊕  𝐶𝜌,𝐴

𝑀(,.𝑧)(𝑢𝑛−1)‖ ≤ 𝐿‖𝑢𝑛 ⊕ 𝑢𝑛−1‖ 

                                                        ≤ 𝐿𝛾(1 + 𝑛)−1‖𝑥𝑛 − 𝑥𝑛−1‖    (4 .6)  

Using (4.4)-(4.6) in (4.3), we have 

‖𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)‖ 

≤  
𝜆𝑁𝛿𝜌

(𝛼𝜌 ⊕ 𝛿)
[(𝑎1𝛾 +  𝑎2𝜈)(1 + 𝑛)−1]‖𝑥𝑛 − 𝑥𝑛−1‖ 

                              + 
𝜆𝑁𝛿𝜌

(𝛼𝜌 ⊕ 𝛿)
𝐿𝛾(1 + 𝑛)−1‖𝑥𝑛 − 𝑥𝑛−1‖ + 

𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)
𝛽𝑟‖𝑥𝑛 − 𝑥𝑛−1‖ 

+
𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖ 

 =[
𝜆𝑁𝛿𝜌[(𝑎1𝛾+ 𝑎2𝜈)(1+𝑛)−1]+𝜆𝑁𝛿𝜌𝐿𝛾(1+𝑛)−1+𝜆𝑁𝛿𝛽𝑟

𝛼𝜌⊕𝛿
] × 

     ‖𝑥𝑛 − 𝑥𝑛−1‖ + 
𝜆𝑁𝛿

(𝛼𝜌⊕𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖ 

Hence, 



39                                                        JNAO Vol. 15, Issue. 2, No.3 :  2024 

‖𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)‖ ≤  
𝜆𝑁𝛿𝜌(1 + 𝑛)−1(𝑎1𝛾 + 𝑎2𝜈 + 𝐿𝛾) + 𝜆𝑁𝛿𝛽𝑟

𝛼𝜌 ⊕ 𝛿
‖𝑥𝑛 − 𝑥𝑛−1‖ 

                                         + 
𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖                (4.7) 

S ince   (𝑔 ⊕ 𝐼) i s  𝛿-Lipschi tz- type  cont inuous ,  we have  

‖𝑥𝑛+1 ⊕ 𝑥𝑛‖ =  ‖[𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)] ⊕ [𝑔(𝑥𝑛+1) ⊕ 𝑥𝑛+1 ⊕ 𝑔(𝑥𝑛) ⊕ 𝑥𝑛]‖ 

 ≤  ‖[𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)] − [𝑔(𝑥𝑛+1) ⊕ 𝑥𝑛+1 ⊕ 𝑔(𝑥𝑛) ⊕ 𝑥𝑛]‖ 

 ≤  ‖𝑔(𝑥𝑛+1) ⊕  𝑔(𝑥𝑛)‖ + ‖(𝑔 ⊕ 𝐼)𝑥𝑛+1 (𝑔 ⊕ 𝐼)𝑥𝑛‖ 

 ≤   
𝜆𝑁𝛿𝜌(1+𝑛)−1(𝑎1𝛾+ 𝑎2𝜈+𝐿𝛾)+𝜆𝑁𝛿𝛽𝑟

𝛼𝜌⊕𝛿
‖𝑥𝑛 − 𝑥𝑛−1‖ 

                               + 
𝜆𝑁𝛿

(𝛼𝜌⊕𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖ +𝛿‖𝑥𝑛+1 ⊕ 𝑥𝑛‖ 

This implies that 

‖𝑥𝑛+1 ⊕ 𝑥𝑛‖

≤  
𝜆𝑁𝛿𝜌(1 + 𝑛)−1(𝑎1𝛾 +  𝑎2𝜈 + 𝐿𝛾) + 𝜆𝑁𝛿𝛽𝑟

(𝛼𝜌 ⊕ 𝛿)(1 − 𝛿)
‖𝑥𝑛 − 𝑥𝑛−1‖   

+ 
𝜆𝑁𝛿

(𝛼𝜌 ⊕ 𝛿)(1 − 𝛿)
‖𝑒𝑛 ⊕ 𝑒𝑛−1‖ 

   Since 𝑥𝑛+1 R  𝑥𝑛, n = 0,1,2, …, we have 

  ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤   𝛷𝑛‖𝑥𝑛 − 𝑥𝑛−1‖ +  𝜂‖𝑒𝑛 ⊕ 𝑒𝑛−1‖ ,               (4.8) 

where ,  𝛷𝑛 =  
𝜆𝑁𝛿𝜌(1+𝑛)−1(𝑎1𝛾+ 𝑎2𝜈+𝐿𝛾)+𝜆𝑁𝛿𝛽𝑟

(𝛼𝜌⊕𝛿)(1−𝛿)
 ; and  𝜂 =

𝜆𝑁𝛿

(𝛼𝜌⊕𝛿)(1−𝛿)
 

Let   Φ=
𝜆𝑁𝛿𝜌(𝑎1𝛾+ 𝑎2𝜈+𝐿𝛾)+𝜆𝑁𝛿𝛽𝑟

(𝛼𝜌⊕𝛿)(1−𝛿)
. 

It is clear that 𝛷𝑛 →Φ as  n→∞. By(4.2) we know that  0<Φ<1 and hence there  ex is t s  

for  a l l  𝑛 ≥  𝑛0 and 𝛷0 ∈ (0,1) such  that  𝛷𝑛 ≤ 𝛷0. Therefore, by (4.8), we have 

‖𝑥𝑛+1 − 𝑥𝑛‖ ≤   𝛷0‖𝑥𝑛 − 𝑥𝑛−1‖ +  𝜂‖𝑒𝑛 ⊕ 𝑒𝑛−1‖   (4.9) 

                                                             ≤  Φ0
n−n0‖xn0+1 − xn0

‖ + η ∑ Φ0
j−1n−n0

j=1 tn−(j−1),        (4.10) 

where  𝒕𝒏=‖𝒆𝒏 ⊕ 𝒆𝒏−𝟏‖, for  a l l  𝒏 ≥  𝒏𝟎. Hence for any 𝒎 ≥ 𝒏 ≥ 𝒏𝟎 we have 

 ‖𝒙𝒎 − 𝒙𝒏‖ ≤  ∑ ‖𝒙𝒌+𝟏 − 𝒙𝒌‖𝒎−𝟏
𝒌=𝒏    ≤

 ∑ 𝜱𝟎
𝒌−𝒏𝟎‖𝒙𝒏𝟎+𝟏 − 𝒙𝒏𝟎

‖𝒎−𝟏
𝒌=𝒏 +   𝜼 ∑ 𝜱𝟎

𝒌𝒎−𝟏
𝒌=𝒏 [∑

𝒕𝒌−(𝒋−𝟏)

𝜱𝟎
𝒌−(𝒋−𝟏)

𝒎−𝟏
𝒌=𝒏 ]  

Since  ∑ ‖𝒆𝒋 − 𝒆𝒋−𝟏‖∞
𝒋=𝟏 𝜸𝒋 <∞,  for  a l l  𝐥𝟏 ∈ (𝟎, 𝟏) and  0<𝜱𝟎<1 ,  i t  fo l lows  that  

‖𝒙𝒎 − 𝒙𝒏‖ → 𝟎,  as  n→∞  and  so  {𝒙𝒏}  i s  a  Cauchy sequence in  𝑿. Thus  there  

ex is t s  x ∈ 𝑿 such  that   𝒙𝒏 → 𝒙  as n→∞ .  By Algor i thm (𝟒. 𝟐) and  𝑯 -Lipschi tz 

cont inui ty  of  the  mappings  𝑩, 𝑻, 𝑮,  we have  

  ‖𝑢𝑛+1 ⊕ 𝑢𝑛‖  ≤   ‖𝑢𝑛+1 − 𝑢𝑛‖  ≤ (1 + (1 + 𝑛)−1)𝛾‖𝑥𝑛+1 − 𝑥𝑛‖; 
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  ‖𝑣𝑛+1 ⊕ 𝑣𝑛‖  ≤   ‖𝑣𝑛+1 − 𝑣𝑛‖  ≤ (1 + (1 + 𝑛)−1)𝜈‖𝑥𝑛+1 − 𝑥𝑛‖; 

  ‖zn+1 ⊕ zn‖  ≤   ‖zn+1 − zn‖  ≤ (1 + (1 + n)−1)μ‖xn+1 − xn‖ 

This  shows that  𝐮𝐧, 𝐯𝐧, 𝐳𝐧 are all Cauchy sequences. Thus there exist 𝐮, 𝐯, 𝐳 ∈ 𝐗  such that 

𝐮𝐧 → 𝐮, 𝐯𝐧 → 𝐯, 𝐳𝐧 → 𝐳 as n→∞.  Now,  we wi l l  show that  u  ∈ 𝐁(𝐱),v  ∈ 𝐓(𝐱), z  ∈ 𝐆(𝐱). 

We have  

 d(𝒖, 𝑩(𝒙)) ≤  ‖𝒖 ⊕ 𝒖𝒏‖ + d(𝒖𝒏, 𝑩(𝒙)) 

  ≤ ‖𝒖 − 𝒖𝒏‖ + d(𝒖𝒏, 𝑩(𝒙)) 

 ≤  ‖𝒖 − 𝒖𝒏‖ + 𝑯(𝑩(𝒙𝒏), 𝑩(𝒙)) 

 ≤  ‖𝒖 − 𝒖𝒏‖ + 𝜸‖𝒙𝒏 − 𝒙‖ → 𝟎 as n→∞.  

  

S ince  𝑩(𝒙) i s  compact ,  we have u∈ 𝑩(𝒙) S imilar ly ,  we can  prove that  v  ∈ 𝑻(𝒙), z  

∈ 𝑮(𝒙). Thus ,  we conclude that  (𝒙, 𝒖, 𝒗, 𝒛) such  that  x  ∈ 𝑿, u  ∈ 𝑩(𝒙),  v  ∈ 𝑻(𝒙), z  ∈

𝑮(𝒙) i s  the  so lut ion of   SNVIP⊕. This completes the proof. 

 

Remark: Using the technique presented in this paper, one can extend, generalize and unify the 

results considered by various researchers in this direction. The Algorithm 4.1 is more general than 

the ones considered in [21-24,26-33] and the related references cited therein. 
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